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CRITICAL CASES FOR NEU'T'RAL FUNCTIONAL DIFFERENTIAL EQUATIONS

Jack K. Hale

1. Introduction. A neutral functional differential equation as

defined below includes the scalar differential-difference equation

(l.l)	 dt [x(t) + ax(t-1) + G(x(t-1))] = bx(t) + cx(t_l)

+ F(x(t),x(t-1)),

where a.,b,,c are constants and G(x),F(y,x) are continuous func-

tions of x,y. For any continuous function cp defined on [-1.,O],

a solution of (1.1) through q) is a continuous function x de-

fined on some interval [_l,a), a > 0, which coincides with T on

[-1,0] and is such that the expression

X(t) + ax(t-1) + G(x(t-1))

[not x(t)] is continuously differentiable on (O ,,a) and satisfies

(1.1) on (O,a).

It has been shown in [1] that the solution x = 0 of (1.1)

is asymptotically stable provided the solution x = 0 of the linear

equation

(1.2)	 T [x(t) + ax(t-1)] = bx(t) + cx(t-1)
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is asymptotically stable and the functions G(x),F(y,x) as well as

their first derivatives vanish at x = y = 0. Furthermore P the

solution x = 0 of (1.2) is asymptotically stable if all roots of

the characteristic equation

(1.3)	 X(l+ae-x) = b + ce-X

have real parts s -S < 0.

The purpose of this paper is to obtain sufficient con-

ditions for the zero solution of (1.1) to be asymptotically stable

even when some roots of (1.3) have zero real parts. Of course,

the discussion involves much more general equations ) but it is

easier to describe the essential ideas for (1.1). A basic hy-

pothesis for (1.1) is that jai < 1 and no roots of (1.3) have

positive real parts. This hypothesis eliminates the possibility

of a sequence of distinct roots X  of (1.3) having Re X
1 

-+0

as j -*co. Suppose P is the finite dimensional linear subspace

of the space C of continuous functions on [-1^0] which corre-

sponds to all initial values of solutions of (1.2) of the Form

p(t)eXt where p is a polynomial and X is a root of (1.3) with

Re X = 0. If P has dimension di, it is shown that there exists

a d-dimensional manifold P* in C with zero in P*, and an

ordinary differential equation on P* such that the stability

properties of the zero solution of this equation on P * determine

the stability properties of the zero solution of (1.1). Also
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constructive methods are given for obtaining this information about

P*. The case of zero roots is discussed in detail and generalizes

the paper of Lefschetz [2] for ordinary differential equations.

The results about P* seem to be new even for ordinary differential

equations although a partial result of this type appears in Pliss

[3). For retarded equations (that is, a = 0, G = 0), Shimanov

[4,5] has given some sufficient conditions for the stability of

(1.1) in special cases. For neutral equations, the presence of the

term G introduces many new difficulties in the discussion and,

in fact, seems to prevent the use of the converse theorems of

Liapunov, a tool systematically employed by Shimanov. The approach

used here follows more closely the method of integral manifolds in

the spirit of Krylov, Bogoluibov and Mitropolski (see [6]).

2. Notation and background. Let En be a real or ccmplcx n-

dimensional linear vector space with norm I.1, r ? 0 a given

real number and C be the space of continuous functions mapping

[-r ,,O] into En with 1q)l = sup-r5050 J(P (0)I for q) e C. If x

is a continuous function taking [a-r P a+A], A ? 0. into E n P then,

for each t e [a.,a+A], we let x  e C be defined by xt (6) = x(t+e)2

-r s 0 s 0. Suppose µ(0),a(0), are n x n matrix functions of

bounded variation in 0, -r s 0 s 01 q) e C and define

%
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a ) I(w) = I [dr(e)]q)(8)
-r

0

(2.1)	 b) g ((p ) = I [dµ(e)icp(e)
-r

C) D(m) _ (p (0 ) - B(q))

t	 for all cp

operators.

first deriv

f
e < 0 and

sets in C.

r( s ), q(s),

in C. The functions L and D are continuous linear

Also P suppose G: C --+ En) F. C -+ Enjo G has a continuous

ative G'((p).,G((p) depends only upon values of (p(e) for

G((p),G'(cp) are uniformly continuous on closed bounded

Also, suppose there exist continuous scalar functions

s ? 0 1 r(0) = q(0) = 0. such that

0

a) I [deµLMTP(e) 5 r(S)I(PII-S

b) F(0) = G(0) = 0

(2.2)
C)	 IF((p ) - F(W)I s q(a)I (p-*l

d)	 I G((p ) - G(*) 15 q ( a ) I (p-*j

for s ? 0 P a ? 0 and all (p,* in C and, furthermore,

Ig)I,I*I is a in (2.3c) ,, (2.3d).

Our main concern throughout this paper is with the

autonomous neutral functional differential equation
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(2.3)	 [D(xt) - G (xt )] = L(xt ) + F(xt).

A solution x = x((p) of (2.3) through a point cp in C

is a continuous function taking [-r ,,A), A > 0, into En such that

xo = q) and D(xt ) is continuously differentiable and satisfies

(2.3) for t in (O VA). It is proved in [7,8] that there is a

unique solution x((p) through (p and x((p)(t) is continuous in

(t,q))

Along with (2.3), we consider the linear system

(2.4 )	 dD(Yt) = L(Yt)•

If the transformation T(t): C -4C is defined by

(2 .5)	 Yt(CP) = T(t)'P,

then it is shown in [9] that (T(t), t ? 0) is a strongly con-

tinuous semigroup of linear operators with infinitesimal generator

A: 9(A) —> C) A;p (e ) = (P ( e )., -r s e S 0)

(2.6)	 O(A) = ((p E C: ^ e C: 4(0) = g (^) + L((P))

and the spectrum v(A) of A consists of those .L which satisfy

the characteristic equation
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(2 .7) det A(%) = o, A(%) = X[I - Ioexedµ(e )] - foe xedT(e)•
-r,	 -r

Let (TD (t), t ? 0) be the strongly continuous semigroup

of linear transformations associated with the solution of the equa-

tion

(2.8)	 d'ffD (xt) = 0.

Definition. The order aD of D is defined by

(2.9)	 aD = inf (real a: there is a constant K(a) with

ITD(t)a)l s K ( a ) eat l(p I , t ? 0, q) E C, D ((P) = 0).

If

N
(2.10)	 D(y) = (P(0) - k 1 AAkCP(-Tk)

the A  are n x n constant matrices ., each T  > 0 and

Ti /Tk is rational for N > 11 it is shown in [10] that

-%T
Y.(2.11)	 aD = sup (Re X: det(I-E Ake	 ) = 0).

Suppose aD < 0 and all roots of (2.7) have nonpositive

real parts. If A = (X: det A(%) = 0^ Re X = 0), then A is a
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finite set and it follows from [9] that the space C can be de-

composed by A as C = P ® Q where P,Q are subspaces of C

invariant under T(t) and A., the space P is finite dimensional

and corresponds to the initial values of all those solutions of

(2.4) which are of the form p(t)e Xt where p(t) is a polynomial
i
in t and X E A.

Let X(t) be the n x n matrix function defined for all

t E [0^-)^ of bounded variation in t and continuous in t from

the right such that

t

n(xt) = f L(Xs )ds + I, t ? 0,
0

(2.12)
Xo(e)= 0	 -r9e<0

I	 9 = 0	 •

Since X(t) is a solution (2.4), it is reasonable to let

	

(2.13)	 X  = T(t)X0.

Using the same arguments as in [1, 9], it is easily shown that the

solution of (2.3) with initial value 9 satisfies the equation

xt - Xo (xt ) = T (t )[(
P-Xo ((P)]

	

(2.14)	 t

+ f (da [-T(t-s)X0 ]G(x8 ) + T(t-s)Xo (xs )ds), t ? 0.
0
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Conversely, any solution of (2.14) satisfies (2.3). The integrals

in (2.14) are evaluated. at each 8 in [-r.0] as ordinary integrals

in En. Also, if C is decomposed by A as C = P ® Q^ then

equation (2.14) is equivalent to

a) xt - XoG (xt ) = T(t)[CpP-XoG(^)]

t
+ f (ds [-T(t-s)Xo]G(xs ) + T(t-s )XoF(xs)ds)

0

(2.15)

b) xQ - XoG (xt ) = T(t) [(PQ-Xo( q)) ]

t	 -^

+ f (ds [-T(t-s)XQ]G(xs ) + T(t-s)X
p
o (xs)ds)

0

where the superscripts P and Q designate the projections of

the corresponding functions onto the subspaces P and Q. re-

spectively. Everything is clear In (2.15) except for the meaning

of the projections Xo^Xo since X0 is not continuous. These

terms will be defined after we have given an explicit way for de-

termining the projections of C onto P and Q.

Projection operators taking C onto P and Q are

easily determined by means of the adjoint differential equation

(2.16)	 [Z(e) - fOZ(T-e)dp(e)] _ -f0z(T_e)dl (e)
-r	 _r

and the bilinear form



0 0

(a, cp ) = a (0 ) D (Cp ) + I 1 a(t-e)[,"u(e)]4)(t)dt
-r o

(2,17)	 o e

I I a (t-e) [dry (e ) ]p (t )dt
-r o

defined for all a c C* = C([Ojr],En)^ Cx a C% q) e C.

If 0 = ((P1j'...)9v) is a basis for the initial values of

those solutions of (2.4) of the form p(t)eXt where p is a poly-

ncmial and X e A and T = col(*1i,...,* ) is a basis for the

initial values of those solutions of (2.16) of the form p(t)e-Xt'

p a polynomial, % e A. then it is shown in [9] that the v x v

matrix (TA) = ((*iyq)i)', i Y j = 1^2^.,,, v) is nonsingular and,

therefore, can be assumed to be the identity. If O f T are defined

in this way, then, for any q) e C. we define (p P@ by

( _ (PP + (@

(2,18)

One can now show that ( T JO X0 ) 'Ls well defined and	 ('Y"Xo ) = `Y(0).

Therefore P if we put

(2.19)	 XPo = 0`Y(0)^ Xo =X0 - Xo

the quantities in (2.15) are well defined.

It is shown in [10] that the hypothesis a 0 C 0 implies
D
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there are K ? 11 d > 0. such that

a) IT:t)4^i s Ke- I q) I, t 2 0 , W e @s

(2.20)

1
b) T(t)XQ ; + f IdsT(t-s)Xo sJ	 Ke-dip t ? 0.01

0

3. Integral manifolds in critical cases. Throughout the remainder

of this paper we assume D is given in (2.9), aD < 0 and the

space C is decomposed by A = (X: det A(X = 0 9 Re X = 0) as

C = P ® Q where P,Q are defined as in the previous section.
i

t
Our objective in this section is to prove there is a v-dimensional

manifold in C which is an integral manifold of system (2.4) in
Y

a neighborhood of zero and the stability properties of the solution

x = 0 relative to this manifold determine the stability properties

of the solutions x = 0 of (2.4). We remark that if there are

same roots of (2.8) with positive real parts then one could ob-

tain the existence of the manifold corresponding to the roots with

zero real parts by using essentially the same procedure as below.

It only complicates the notation by forcing one to consider some

integrals from 0 to +co to take care of the roots with positive

real parts.

Let PC = PC([-r.,0].,En) be the space of functions

mapping [-r .,0] into En which are right continuous and bounded

on [-r,0] ands for any (p in PC ., 	 ITI = sup eE[-r 0]I(p(e)J.
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It is not difficult to see that the operator T(t) associated

with the linear system (2.5) can be defined on PC. Also ., for any

cp c PC with 4p e PC B for e < 0,

lir, + t T(t)4(9)-^(e)] = lim	 1{^(t+s)- (e)] = o(e)
t-;o	 t-^^^

ands for e = 01

lim	 HT(t)(F(0)-4(0)] _ jim	 tg(T(t)(P)-g(v)-ftL(T(s)4)ds]
t -,^ 0 :.	 t -*0 4-	 0

= g(^) T L(q)

since g satisfies (2.1b). Therefore, if we let A: -9(A) -> PCY

-9(A) = ((p e PC: ^ c PC), be defined by

4( e ),	 -r s e < o

(3. 1 )	 AP ( e ) _
g (^) + L (q)), e = 01

then

(3.2)	 3-E - T (t )(p = T(t)Ap

for all T in O(A).

Note that if cp is continuously differentiable on [-r.0]

and kp is continuous, then Acp coincides with the action on q

of the infinitesimal generator of the semigroup on C generated by
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(2.4). Therefore ) we may consider the operator A in (3.2) as

an extension of the infinitesimal generator of (2.4) to PC.

The variation of constants formula (2.14) for the solu-

tion of (2.3) suggests the change of variables x  - X 0G(xt ) = zt

to obtain a new equation for z t in PC. This transformation is

a well defined transformation from PC to PC and preserves

stability properties since G(x t ) depends only upon the values of

xt (0) for -r s 0 < 0 and, therefore ) G(xt) = G(zt). Thus, ifY

in (2.14).,

zt = X  - X0G(xJ,

(3.3) xt = zt + X0G(zt) = H(zt),,

then (2.14) becomes

t
(3. 4 )	 zt = T(t)zO + f ([-dsT(t-s)XO ]G(zs ) + T(t-s)XOF(H(zs))ds).

0

Let (DT be the matrices defined in Section 2 for the

decomposition C = P (D Q) ( Ỳ .,(D) = I .. and let E be the q x q

matrix such that T(t)O = 0 exp EtY t e (--.,co). The spectrum of

E is A. For any cp e PC Y one can define (T,(p) and ., there-

fore, it is meaningful to put

(3.5)	 CPP = m ( `̂ ^^)^ (PQ = q) - (P P, (P E PC.

Also ., the equation (3.4) can be split as (2.15) with appropriate
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substitutions from (3.3). Furthermore ,, if zt = Ou(t) s then it

follows from (2.15a) and the transformation (3.3) that

t

Ou(t) = (Pe Etu(0) + of ([-dseE(t-s)T(0)]G(zs)

0

+ eE(t-s)T(G)F(H(zs))ds).

Therefore, we see that equation (3.4) is equivalent to

z  = Ou(t) + wti, wt E Q

(3.6) ddtt) 
= Eu(t) + Fl(u(t),wt))

wt = T(t)wO + Jt (-[dsT (t- s )XD ] g0 (u ( s ),ws ) + T(t-s)X^ 0(u(s)^ws)ds),

where

Fl(u.,(P) = `F(0)F(H(Ou+(p)) + ET(0)G(Ou+g)

(3.7)	 G0(u,(P) = G(Ou+,p)

FO (U19) ) = F (H (OU-fT) ), u E Ev, cP E .Q•

For any p > 0, let II = ((u,(P) E Ev x Q: 0 s I ul <

0 s I(p1 < p) and let Fi, F0, GO be functions defined on n  , which coin-

cide with Fl, FO, GO respectively on ((u,(p) E Ev x Q: 0 s I ul,

(p1 5 p) and

Fi( u, q) ) = Fi
TUT ,^) ,	 = 0,1

(3 •S)

G6(u,(yI) = GO ( TZT ,T), p < I ul < ^.
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From the properties of F l, F0 and GJ, ther° is a nondecreaztIng

continuous function v(P), P ? 0, v(0) = 0, such that

F1(01^) = 0 ) IF
i

( u, q )I 5 v(P)P

IFi(u,q) -F^(v, y)I s v (P)(I u''rI + Iq -^VI )^	 J = 0,1.

(3.9)

G
6e

(0 , 0 ) = 0, I Ge (u,q)I 5 v(P)P

IGO(u, q )-GO ( v,v)I 5 v (P)(I u-v l + I(P-*I )

for (u,q), (ti,*) E t2P (see, for example, Chafee [11]).

In order to discuss the local properties of (3.6) near

U = 0, wt = 01 it is convenient to first discuss the global properties

of the system

du(t) = Eu(t) + Fe(u(t),wt)

(3.10 )	 wt = T(t)w0 - ft[dsT(t-s)YO]G0(u(s),ws)

+ f8T(t-s)XOF6(u(s), w s)ds, t ? 0.

Theorem 3. 1 . There is a p0 > 0 and a lipschitz continuous function

h: E  —► a such that for any 0 < P 5 P0, (u, h(u)) E ilp, 0 s I uI <

and the set MP = ((u,(P) E n P ; (p - h(u), 0 s ( uI < m) is an integral

manifold of (3,10). Furthermo-e, any solution of (3.10) with initial

value in 1. P is defined for all t E (--,-0).
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Proof. For simplicity in the estimates we assume 	 exp Eti 1 1. Only

slight changes in the proof are needed since for any e > 0 there is

in (2.20) and v(P) as in (3.9), for any p with v( p ) = a/411

there is a constant K 1 = K1 (a) such that

10l dsT(-s)XQI e-2v(P)s 5- Kl.

In fact, if we write this integral as an infinite stun of integrals of

length orie and use (2.20), then

' fold sT(-s)XQ^e-2v(p)s = E f01dsT(j+l-s)X^le2v(P)(J+1-s)
00

s r-Oe2v(P)(J +1)f
 ldST(J +1-s)Y^l

e-(a-2v(p))(j+l)

;9 EJ^e -a(3+1)/2 d =f Kl(a).

Let K2 = max(Kl, K), choose p0 so that

(3. 11 )	 8K2(1+a-1) v ( PO ) < 1,

and for any 0 < p s p0, let

S = (h: Ev -+Q, continuous, (u, h(u)) E 11 P, u E Ev, h(0) = 0,

(3.1.2)
h(u) - ii(v) 1 s 1 u-v' , U. v E Ev}
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For	 h E S,	 let	 I hl'	 = sup(	 h(u) I ,	 u E Ev ) .

For any	 h E S,	 let	 u(t) = u(t ) uO , h), u(0, uO , h) = UD,

be the solution of the system

(3.13)	 u(t) = Eu(t) + Fe(u(t),h(u(t))), t ? 0,

and define the mapping .CP : S -4 Q by the relation

(Yh)( u0 ) = -fl[dsT(-s)XOJGO(u(s),h(u(s)))
(3.14)

+ f^T(-s)XOF6(u(s),h(u(s)))ds,

for uO E Ev . Our objective is to show that 9 has a fixed point

in S and then to show that this fired point defines an integral

manifold p.

For any h in S, it follows from (3.9). (3.11) and our

estimates on T(t) in (2.20) that

J (Yh)(uO)J s Kv(P)P(1+a-3.) s P.

To estimate the dependence of ( yah)(uO) upon h and uO we need

the dependence of u(t ) uO,h) upon the sane parameters. From (3.13),

one easily obtains from the variation of constants formula and simple

estimates that
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I u( t , u,, h ) - u( t , u0) h)l ;9 e-2v(p)t(I u0 --I + 2l h-hl ), t s 0.

Since

I GO( u ( t , u0 , h ), h ( u ( t , u0 , h ))) - G6(u(t,u0,h),h(u(t,u01h)))I

;k 2v(P)lu(t,u0,h) - u ( t , u0 , h)I + v(P)I h-'^

I
I	 '

it follows that

IJ.( d sT(- s) J[ GO ( u( s , u0 , h), h ( u( s , u0 , h)) - GO(u(s,u0,h),h(u(s,up,h)))JI

J„IdsT(-s)X^I [2v(P)e 2v(P)s(I °o - u0 1 + 21 h-hl) + v (P)I h-hj J

i Kv(P) I h-hl + K12v(P) (I u0-u0I + 2l h-hl )

2v(P)(I u, -u01 + I h-hl) .

In a similar manner, one shows that

IJ„T('S)[FO(u(s,u0,h),h(u(s,uO,h))) - FO(u(s,u0,h),h(u,s,up,h)))Jdsl

4K^ P) (l uo--I + 1 
h_^ ) + Tv P) h_"I

a -- % I un-u01 + I h-^) .

Combining these estimates and using (3.11), we obtain

C
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I (.9h) (u0 ) - (.^?h)(u0)1 6 I u0-u0I + 2I h-hI .

Therefore, 5P :  S —>S and is a contraction. The unique fixed point

h of Jam' in S is easily sho.ni to define an integral manifold sat-

isfying the properties of the theorem. This completes the proof.
i

our next objective is to determine the stability properties

of the manifold M  given in Theorem 3.1. To do this, we need

Lemma 3.1. There are a p1 > 01 K3 > 0, al > 0, and a continuous func-

tion p: R+ X n  —► q such that if (u(t), wt ) is a solution of (3.10)
1

with initial value (u0,(p) E R+ X ilp , then (u(t),wt) exists for
1

t Z 0 and

(3.15)	 wt - P(t,u(t),(P), t ? 0.

Moreover, p satisfies the inequalities

a) IP( t , u, q) )I	 p1
(3.16)

	

	 -at
o) IP( t , u,(P) - p( t , u,F)1 $ l u-^ + K3  1 I(P

for (t,u,(P), (t,u,	 R+ X np .
1

Proof: Consider the equaticn
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14JT- .= 
Eu( T ) + F1(u(T),P(T,u(T),^)),	 t ? 0)

U(0 ) = u0,

P( t , u., Cp = T(t)w - ft[d s T(+-s)XQ]Ge(V.,S),P(s,u(s),(D))

+ fOT(t-s)X0 0(u(s),p(s)u(s);p))ds,

for (t,u0,(P) E R+ X n  . By using arguments very similar to the proof
0

of Theorem 3.1, one proves the existence of a p(t,u,cp) satisfying

(3.16a) which is lipschitzian in u,q). To show the precise estimate

(3.17a) is more difficult and one can use an argument similar to the

one used in the basic stability theorem in [1] to obtain

this estimate.	 It is then easy to verify (3.1.x). The details are

omitted.

Theorem 3.2. With h as in Theorem 3.1 and P1 as in Lemma,  3.1,

if (u(t) , wt) is a solution of (3.10) with initial value (u0,(p) enP ,
1

then (11(t),wt) is defined for all t Z 0 and

wt - h(u(t))i S Kle^lt l(p - h(u0 )j .

Proof; If M 	 is the integral manifold in Theorem 3.1, then any
1

solution lying in M 	 must satisfy (3.15). If (u(t),wt) is any
1

solution of (3.10) with initial value in SI P , then Lemma 3. 1 implies
1
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this solution is def^ncd for all t a 0. For an arbitrary T a 0,

the solution of (3.10) through (u(T),h(u(T)) is defined for all

t E (-«^,^) and lies on M 	 from Theorem 3.1. This solution can
1

therefore be considered as the value of a solution. of (3.10) at time

T starting from score point (u*,Q*) at t - 0. Lemma 3.1, there-

fore, implies

I wT - h ( u ( T ))i = Ip(T,u(r),(P) - p(T,u(T))(p *)I

S K3 e	 I(p-9* I

and this proves the theorem.

The follo, ,ring corollary is immediate from Theorem 3.2.

Corollary 3.1. With h as in Theorem 3.1 and p  as in Lemma 3.1,

any solution (u(t),wt ) E R	 for t S0 must lie on M
pl	 pl

Let h be as in Theorem 3.1 and p  as in Lemma 3.1 and

consider the ordinary differential equation

(3.17)	 du-t) s Eu(t) + Fe(u(t),h(u(t)))
dt	 1

which describe:, the behavior cf the solutions (u(t),wt) _ (u(t),h(u(t))	 f

of (3.10) on the integral manifold Mp .
1

Theorem 3.3. If `,he solution u = 0 of (3.17) is uniformly asymptoti-

cally stable (unstable), then the solution u = 0, wt	 0 of (3.10)
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[and therefore the solution x = 0 of (2.3)] is uniformly asymptoti-

cally stable (un:;table).

?roof: For any S > 0, let B 6 = (( u' CP) e Ev x Q: I ul + I (PI < 6).

Let M
pl	 b0

n B	 be contained in the region of attraction of the solu-

tion u = 0 of (3.17). We first prove stability. From the hypothesis

on (3.17), for any e > 0, 2e < pl, there is a S > 0
10 

S < bo, such

that any solution u(t) of (3.17) satisfies ju(t)j < e for t ? 0

provided that Ju(0)l < S. Also., there is a t0 = t0(S) such that

Ju(t)l < 5/2 for t 3 t0 since the zero solution of (3.17) is as-

sumed to be uniformly asymptotically stable. With K l,a1 as in Theorem

3.2, further restrict b so that K 1 exp(-a1t0(S)) < 1/2. Such a

choice of b is possible since t0 (S) -+	 as S -+0.

Since the solutions of (3.10) depend conti guously upon the

initial data and the set m  n B g is precompact, there is a 51-
1

neighborhood V 	
P1 

n B s such that ( u(0 ), Wo) a Vbl implies

the solution (u(t), wt) of (3.10) belongs to B 
2 

for 0 S t S t0

and (u(t0),wt0 ) is in a 8/2 neighborhood W6/2 of 
m  

n Bb/2.
Since K  exp(-alto ) < 1/2, it follows thatwt < 61/2 and, thus,

0
(u(tO ), wt ) E V  . Therefore, (u(t), wt) must belong to B2e for all_

0	 1
t 2 0. This proves stability of the zero solution of (3.10).

Suppose VS	(O;	 ais chosen as above and (u,wO) 	 V8 . The
1	 1

solution (u(t),wt) of (3.10) through (u(0),wo) is in B2e . Since

2e < pl, this defines a solution x of (2.3) which is bounded. Since

eD < 0, it follows from [12] that the orbit of this solution
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has a nonenpty w-limit set. Theorem 3.2 implies this limit set

must to in m  n B s. Since the a)--limit set is invariant and the
1

only invariant set in m n B s is zero [by the hypothesis on system
1

(3.17)] it follo%.;s that every solution of (3.10) with initial value

in B6 approaches zero as t -, oo. This completes the proof of the
'	 1

asymptotic stability.

If the solution u = 0 is unstable, then it is obvious that

the zero solution of (3.10) is unstable. This completes the proof of

the theorem.

4.. Stability in critical cases-zero roots. In the previous section,

we proved a result (Theorem 3.3) which stated that the asymptotic

stability (or instability) of the zero solution of (2.3) are de-

termined by the asymptotic stability (or instability) of the zero

solution of an ordi y differential equation (3.17). It, therefore

remains to analyze the behavior of the solutions of (3.17) near u = 0.

Of course, this is an extremely difficult task and no general pro-

cedure is available to treat all possible situations. Therefore one

is forced to consider particular cases, one of which will be discussed

in this section.

Suppose D. L, G, F as before and aD < 0. Also, suppose

x = 0 is an isolated equilibrium point of (2.3) and if (p(y) is

an analytic function of a v-vector y in a neighborhood of y = 0,

then G(T(y)), F((p(y)) are analytic functions of y in a neighbor-
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hood of y = 0. Finally, X = 0 is a root of the characteristic

equation (2.7) of multiplicity v, the dimension of the null space

of A(0) is v and all other roots of (2.7) have negative real

parts; that is, A of Section 2 consists only of the element 0,

and if C is decomposed by A as C = P ® Q, then a basis 0 for

P can be chosen to consist of constant functions. Since T(t)@ = 4,

the matrix E in (3. 6 ) is zero. For notational convenience through-

out this section, if (p is a constant function in C, then cp
0 

will

denote the value of this function in En.

If T is a basis for the constant solutions of the ad-

joint equation (2.16) with (T,(D) = I ) then a direct computation

shows that

I = (I`, 0 ) = T0o(o)Oa9

	

0	 0

A(o ) = I - f dµ(e ) - ! edTI(e).

	

-r	 -r

Suppose PC is the space of piecewise continuous func-

tions defined in Section 3 and A is defined by (3.1). Let

#(0 ) be that n x n matrix which takes the range of A(0) onto

the range of the transpose A'(0) of p(0) in a one-to-one manner

and A(0)G#(0) = I.
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Lemma 4.1. If Q* = (q ) E PC: (`Y,q)) = 0) and A is defined by

(3.1), then there is a bounded right inverse A 1 of A taking

PC into Q* n G/ (A); that is, if q) E PC,	 = A 1m, then
*

* E Q fl 9(A) and A* = AA
_1
 CP = (p. Also, if q) E PC, then A T

is defined by

i

(4.2)	 (A q)) ( 9 ) = (P 1 (0) + (Doa

q)1 (e ) = ! (p (s ) ds + c1 (q)), -r 
s e g 0,

,	 o

c1 ((P) = L̂ (0 ) (I,(P)

a = - (I`,q)1)

where (I,q)) is the bilinear form defined in (2.17) evaluated

at the identity I.

I
Proof; With A-1 defined in (4.2). it is clear that A -1 is a

bounded linear operator taking PC in Q * . Also dA q)/de is in

PC and, for -r s e < 0,

(AA- q))(e ) = de (A ^)(e ) = (p(e)•

Since g(rp) satisfies (2.2a), (AA 	 (e) = d(A 0 (e) /de,

-r s 0 < 0, f(0) = 0 and A(0)A (0) = I, we have
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g (e A- (P) + f (A- 9) = g (4) + f ((p1+0a)

= g (4) + f (^P

= g((p) + f(f (p(s)ds) + f(2(0)(I)(P))

= g ((p ) + Io [ dT (0)]Ie(p(s)ds + o(o)o#(o)(I,cp)
-r	 o

= (P(0)•

This completes the proof of the lemma.

Let X  be the n X n matrix function on [-r^0] defined

by X0 (@) = 0. -r s 6"< 0, Xo (0) = I, the identity.

Lemma 4.2. Suppose G,F are arbitrary functions satisfying (2.2b) - (2.2d)'

G(cp) depends only on the values of T(B) for B < 0 and G((p(y)), F(:p(y))

are analytic functions of the v-vector y in a neighborhood of y = 0 if

q)(y) is analytic in y in a neighborhood of y = 0. With A 1 as in

Lemma 4.1. the equation

(4 .3)	 (P + Xo (my+4p ) = -A 'X (0y+4 )

has a unique solution cpQ = a(y) in a neighborhocd of y = 0.1 qiQ = 0JO

and the solution is analytic in y in a neighborhood of y = 0.

Furthermore, if the power series expansion of G(Oy+(p 	 F((Dy+q)
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begin with terms of-degree k in y, then the power series expansion

of a(y) begin with terms of at least degree k in y.

The proof is not given since it is a standard application

of the method of successive approximations and the properties of

A 1.
We now apply these lemmas to the study of the stability

of the zero solution of (2.3). Suppose system (2.3) has been

transformed to the system (3.6) through the transformation (3.3).

We now make an additional transformation on (3.6) to a more con-

venient form.

Let a(u) be the solution assurred by Lemma 4.2 of the

equation

(4.4)	 (P + Xo	A(Cu+q) = - 1Xo (H(Ou+(p))

and consider the transformation of variables

( 4 .5)	 wt = vt + a(u(t))

in (3.6). If P(u) = (Du + a(u) ., F-H =
ev
 F., the new equation_ for vt

is given by
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(4.6)	 vt = T(t)v0 + T(t)a(u(0)) - a(u(t))

t	 ^,
+ f (ds[-T(t-s)Xo]G(PS(u)) + T(t-s)Xo (P(u))ds)

0

t
+ f ds[-T(t-s)Xo](G(P(u) + vs ) - G(P(u)))

0

t
+ f T(t-s)X0(F(O(u) + v s ) - F(P(u)))ds

0

where the function u under the integrals is always evaluated at

s. Since u(t) has a continuous first derivative, the function

G(4u(t) + a(u(t))) has a continuous first derivative. Therefore,

the first tern in the first integral in (4.6) can be integrated by

parts to obtain

t^^
(1+.7) f T(t-s)XodsG(P(u(s))) + T(t)X - P(u(0))) - XoG(P(u(t))).

0

If r(u (t)) = a(u(t)) + XO (P(u(t))), then r(u (t)) is
in -9(A) for each t and r(u(t)) is also continuously

differentiable in t. Therefore ., from

d T(t-s)r(u(s)) = -T(t-s)AT(u(s)) + T(t-s) ar(^)

and,

(4.8)	 T(t)r(u(0)) - T(t)r(u(t)) _ _ftT(t-s)Ar(u(s))ds + ftT(t-s) (	'as.
0	 0
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j	 If we use these relations (4.7), (4.8) in (4.6) together with the fact
r
i

!	 that a(u) satisfies (4.4), we obtain

(4.9) vt = T(t)v0 - 
jt( dsT(t-S)Xq]( G (P(u(S))) + ws ) - G(P(u(S))))
0

t
+ j T(t-s)Xa(F(P(u(s)) + v s ) - F(P(u(s))))ds

i	 o

t ^(u ( s )) •+ j T(t-s) a------ u(s)ds
0

P(u) = Ou + a(u), F = FOH,

where a satisfies (4.4) and H is defined in (3.3).

We summarize these results in the following

Theorem 4.1. Suppose D,L,G,F satisfy the conditions of section 21

zero is a characteristic value of (2.4) whose geometric and algebraic

multiplicities are v	 and G((p(y)), F(cp(y)) are analytic functions

of the v-vector y in a neighborhood of y = 0. Suppose PC is the

space of functions mapping [-r.0] into En which are right continuous

and bounded and A: D(A) -4 PC, 9(A) C PC is defined by (3.1). Let

C be decomposed by (0) as C = P ® Q. With H defined as in

(3.3), Let a(u) be the solution of (4.4). If

(4.10)	 a) x  = H(zt ), P(u) = Ou + a(u)

b)	 zt = P(u (t )) + Vt., vt E Q

C) F(u,(P) = F(H(P(u) + (P)

d) G(u,p) = G(P(u) + Q),
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then the initial problem for (2.3) in a neighborhood of (p = 0 is

equivalent to the equations

a) du (t) = T(0)A-:

t
b) vt = T(t)v

0
 - f [dsT(t-3)Xo][G('t(s),"') _ 6(u(s),0)]

O
t

+ f T(t-s)Xo[F(u(S'A i v8 ) - F(u(s),0)]ds
_	 o

t	
^^- (u(s))+ f T(t-s) a---) T(0)F(u(s)^vs)ds.

0

There is a degenerate case of (4.11) which needs to be dis-

cussed separately; namely, the case in which F in (2.3) satisfies

F(q)) = 0 for all q) in a neighborhood of ^p = 0. Equations (4.11)

for this case are

du(t)
-T--^ = 0

t
v  = T(t)v0 - f [dsT(t-s)X0][G(u(s),vs ) 	 G(u(s),0)].

0

Using the same type of argument as in the proof of the stability theorem

in [1], one can show that the solution (u^v t ) = (0 1 0) is uniformly

stable and, thus, the solution x = 0 of (2.3) is uniformly stable.

That is, a perturbation in (2.3) which occurs only in the term which

is being differentiated does not affect the zero roots of (2.7) provided

that the algebraic and geometric multiplicity of this root are the same. 	 1
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We now discuss the case when F((p) / 0. System (4.11.) is of

the same form as (3.6). The results in section 3 did not depend upon

the form of Fl, F0, G0 but only upon the estimates (3.9). Therefore,

the conclusion of Theorem 3.3 is valid for our situation and it remains

only to analyze the behavior of the solutions of (3.17) under our

present hypotheses. Now the form of the terms in (4.11) are important

since they permit us to determine the qualitative behavior of the

integral manifold giver in Theorem 3.1 near u = 0.

To be more specific, 	 us define

	

(4.12)	 Fl(u,T) = To (u,q)

Go (u, (P) = G (u,?) - G(u,0)

Fo (u, q)) = X0 F,
	

F,- F(u,0)] + s i'o (u,q))

and write (4.11) as

	

(4.13)	
ddtt)	 Fl(u,vt)

t
vt - T(t)vo - f [dsT(t-s)]G0(u(s),vs)

0

t
+ f T(t-s)F0(u(s))vs)ds.

0

If the functions Fl,G0, F0 in (4.12) are extended as

Fe Ge Fe in (3.3) then Theorem 3.1 guarantees the existence of1.9
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an integral manifold td of the extended system with M = ((u^h0(u)),

0 s lul < .) wncre ho: Ev ->Q is lipschitz continuous. Further-

more l the proof of that theorem gave ho as the limit of the

sequence of successive approximations

(4.14)	 ho = 0,

0
k+1 

(U
0 _ -! [ dsT ( - s )XQ ] G o(uk ( s ), hk(u(s)))

0
+ f T(-s)Fe(uk(s), hk(u(s)))ds,

_Cc

k(t ) = F1(uk (t ), hk(uk(t))), uku	 (0) = uo.

Furthermore, for every k.,

(4.15)	 l u (t, u0 ,hk)l 
;9 0
e-2v(p)tlu 

1,	
t z 0.

Suppose the power series expansion • A F(u,,0) beings with terms

of degree m = 2 and p  in (3.11) is fiirther restricted so that

4(m+l)v(p
0
) < a. From (4.14)

0

hl (uo) = f T(-s)Fe(ul(s),C)ds.
— Cc

From the definition of Fe in (3.8) and (4.12) and Lemma 4.2^ it
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follows that there is a constant k such that

IFo(uj,0)l I klulm+l.

i	
Therefore

lh1 (u
0 )l ^ foKeas

ke
-2(m+l)v(p)s lu 0(m+lds

-00

S 2kKCx ll uo l M+l.

A simple induction argument on the sequence h k allows one to con-

clude that ho (u) = &(lul
m+l

) as J ul -+0. This is summarized in

Lemma 4.3. Suppose the hypotheses of Theorem 4.1 are satisfied and

ho: E  -► Q 'is the lipschitz continuous function assured by Theorem

3.1.' If the power series expansion of F(u.0) beings with terms

of degree m. then

ho (u) = &I(
l ul ,"^*1) as J ul -00.

With ho as in Lemma 4.;, the analogue of system (3.17)

is

(4.16)	 u s ^o (U.Oho(u)).
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Theorem L .2. Under the assumptions and notations of Theorem 4.1.

let Q(u) desipzate the homogeneous polynomial of the lowest
A

degree terms in the power series expansion of T(0)F(u^0). If the

zero solution of the ordinary differential equation

( 4 .17)
	

u = Q(u)

is asymptotically stable ,, then the zero solution of (2.3) is

asymptotically stable (and therefore ., the degree of Q(y) is odd).

If there is a homogeneous polynomial A(u) which is positive on

some set and

is negative definite ,, then the zero solution of (2.3) is unstable.

Proof; Suppose the degree of Q(y) is m. If the zero solution

of (4.17) is asymptotically stable, it is known from ordinary

differential equations (see Zubov [133) that there are two positive

definite quadratic forms A(y) e B(y) homogeneous of degree

M + 1.9 2m^ respectively such that

(4-17) (u) = -B(u),

where A
(4.17) 

(u) represents the derivative of A(u) along the
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solutions of (4.17). 1%ere is a p2 > 0 such that, for Jul s p2.1

Fe (u^ho (u)) = Fl (u^ho (u)) = T(0)F(u,ho(u)). Therefore for Jul s p2^

f

A(4.16)(u)	
-B(u) + 7;	 TIF(u,ho(a)) - F(u'0)].

Lemma 3.3 implies the second term in this expression is at least

order 2m + 1 and therefore d(4.16)(u) is negative definite in

a neighborhood of u = 0. The classical Liapunov theorem implies

the zero solution of (4.16) is uniformly asymptotically stable.

Theorem 3.3 implies the zero solution of (2.3) is uniformly

asymptotically stable.

If there is a homogeneous polynomial A(u) of degree

1 which is not of constant sign and B(u) = -[-2A(u)/')'1Q-(u) is

negative definite ., then

(4.16) (
u) = -B(u) + )) T0[F(u,ho (u)) - F(u,0)].

In a sufficiently small neighborhood of u = 0, the right hand

side of this expression is a positive definite function. The

classical Cetaev theorem implies the solution 1 = 0 of (4.16), is

unstable. Theorem 3.3 implies the solution x = 0 of (2.3) is

unstable and the Droof ire complete.

Corollary 4.1. Under the assumptions and notations of Theorem 4.1,,

let R(u) designate the homogeneous polynomial of the lowest
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degree terms in the power series expansion of T(0)F(H((Du)). If

the zero solution of the ordinary differential equation

(4.18)	 u = R(u)

is asymptotically stable, then the zero solution of (2.3) is

asymptotically stable. If there is a homogeneous polyncmial which

is positive on some set and

S(u) = -[ ;5%(u)/ai]R(u)

is negative definite, then the zero solution of (2.3) is unstable.

Proof; Let the degree of R(u) be m. From (4.10), T(0)F(u,0)

F(H((Du+a(u))). Furthermore, from Lemma 4.2, the power series ex-

pansions of a(u) begins with terms of at least degree 2. This

implies that

F(H(Ou+a(u))) = R(u) + T(u)

where the power series expansion of T(u) beings with terms of

at least degree m + 1. Theorem 4.2 now gives the result.

Corollary 4.1 includes Theorem 3.1 in [5] for retarded

functional differential equations.

Corollary 4.2. Suppose the hypotheses of Theorem 4.1 are satisfied
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and zero is a simple root of (2,7) and equation ( x+.17) is

(4.19)	 u = a m,	 a # 0.
I

If a < 0 and m is odd., the solution x = 0 of (2.3) is

asymptotically stable. Otherwise, the solution x = 0 of (2.3)

is unstable.

Proof: If a < 0 and m is odd., A(u) = u2 12 ., then

A(4.19)(u) = 2 m+l

is a negative definite function and the solution u = 0 of (4.19)

is asymptotically stable. Theorem 4.2 im plies the solution x = 0

of (2.3) is asymptotically stable.

If a > 0^ m is odd and A(u) = u2/2 ,, then

-B(u) is positive definite. Theorem 4.2 implies the solution

x = 0 of (2.3) is unstable. If m is even and A(u) = (sgn a)u,

then A (4.19) (u) = -B(u) = jal m is positive dafinite. Theorem

4.2 implies the solution x = 0 of (2.3) is unstable. The proof

is complete.

As an example ., let us consider the two dimensional

system [x = col (xl,x2) ]
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(4.20)	 ^ xl (t) = x2(t)

d [x
2(t) - g(x(t-r))] =	 2(t -r)+ f(x(t),x(t-r))

I

I
where r > 0 9 f,g are analytic in their arguments in a neighborhood

of zero and the poorer series expansions begin with terms of degree

Z 2. The associated linear equation is the RFDL

	

(4.21)	
H xl (t ) = x2(t)

n x
2(t) = Wc2(t-r)

which has aD = -^ and a characteristic equation given by

	

(4.22)	 a(A-ae-?^r) = 0.

For -7r/2r < a < 0, equation (4,22) has a simple zero root and all

other roots have negative real parts. Me bases for the constant

solutions of (4.21) and its adjoint may be taken as O,`?,

respectively, with

0(0) = col( 1,0), 'Y(0) = (a,-1).

.Suppose C is decomposed by (0) as P ® Q where P is the one

dimensional subspace spanned by 0. The function H in Theorem 4.1
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is given by

(4.23)	 H(*) ( 0 ) = *(0), -r = 0 < 0

*(0) + G(*(-r)), e = 0,

where G = col(O,g). If x  = H(zt ), zt = (Du(t) + wt, then the

equations for u(t), wt are

(4.24)	 a) u(t) = -f(z(t) + G(z(t-r)), z(t-r))

b)	 wt = T(t)W
0
 + ftT(t-s)Xaf (z(s) + G(z(s-r)), z(s-r))ds.

0

For wt = 0, the right hand side of (4.24a) becomes

(4.25)	 -f((Du + G((Du),(Du) = -f(a 1u,g(0 1u, 0 )., a 1u, 0)

def
= aum + 

b 
m+1 + ...

If a(u) is the solution of (4.4) for this particular case, then

the fact that a(u) begins with second order terns in u implies

that

-f(1Du+a(u)+G(Ou+a(u)), (Du+a(u)) = aum + cu +1 + .•. ;

that is ., 	 loT•rest order terms in the expansion of -f are not-

affected by a(u).
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Therefore ., an application of Corollary 4.1 implies the

following result. If a < 0 and m is odd, the solution x = 0

of (4.20) is uriformly asymptotically stable. Otherwise, for any

a # 0, the solution x = 0 of (4.21) is unstable.

As a particular illustration, if

f(al-a2Y a3 ^a4 ) = bl^,, + b2pla2 + b 
g(Pl' P 2) = Yl

then ma in (4.25) are given by

m = 3 ., a = (-a) 3 (bl+b2cl+b3 ) .

Since a < 02 it follows that the solution of the equation is

asymptotically stable if b l + b 2cl + b3 < 0 and unstable if

bl+b2cl+b3>0.
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